An unsupervised hierarchical clustering based heuristic algorithm for facilitated training of electricity consumption disaggregation systems
نویسندگان
چکیده
Provision of training data sets is one of the core requirements for event-based supervised NILM (NonIntrusive Load Monitoring) algorithms. Due to diversity in appliances’ technologies, in-situ training by users is often required. This process might require continuous user-interaction to ensure that a high quality training data set is provided. Pre-populating a training data set could potentially reduce the need for user-system interaction. In this study, a heuristic unsupervised clustering algorithm is presented and evaluated to enable autonomous partitioning of appliances signature space (i.e. feature space) for applications in electricity consumption disaggregation. The algorithm is based on hierarchical clustering and uses the characteristics of a cluster binary tree to determine the distance threshold for pruning the tree without a priori information. The algorithm determines the partition of a feature space recursively to account for multi-scale nature of the binary cluster tree. Evaluation of the algorithm was carried out using metrics for accuracy and cluster quality (proposed in this study) on a fully labeled data set that was collected and processed in a real residential setting. The algorithm performance in accurate partitioning of the feature space and the effect of different feature extraction techniques were presented and discussed. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملAn Approach for Unsupervised Non-Intrusive Load Monitoring of Residential Appliances
Non-Intrusive Load Monitoring (NILM) refers to the analysis of the aggregate power consumption of electric loads in order to recognize the existence and the consumption profile of each individual appliance. In this paper, we briefly describe our ongoing research on an unsupervised NILM system suitable for applications in the residential sector. The proposed system consists of the typical stages...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملOptimal Bidding Strategies of GENCOs in Day-Ahead Energy and Spinning Reserve Markets Based on Hybrid GA-Heuristic Optimization Algorithm
In an electricity market, every generation company (GENCO) attempts to maximize profit according to other participants bidding behaviors and power systems operating conditions. The goal of this study is to examine the optimal bidding strategy problem for GENCOs in energy and spinning reserve markets based on a hybrid GA-heuristic optimization algorithm. The heuristic optimization algorithm used...
متن کاملIdentification of Power Stripping Resources with Fuzzy Cluster Dynamic Approach (Case Study: West Azerbaijan Province)
Reducing electric power theft is a significant part of the potential benefits of implementing the concept of smart grid. This paper proposes a data-based approach to identify locations with unusual electricity consumption. The new distance-based method classifies the new data as violator costumers, if their distance is long to the primary consumption data. The proposed algorithm determines the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advanced Engineering Informatics
دوره 28 شماره
صفحات -
تاریخ انتشار 2014